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Preface

In an age where the digital landscape has become an integral part of our daily lives,

the importance of privacy and data security has never been more paramount. With

the growing concerns over data breaches, cyber-attacks, and unauthorized access to

sensitive information, robust cryptography and encryption techniques have become the

need of the hour. The task of safeguarding our digital assets and communications has

fallen upon innovative technologies that can withstand the ever-evolving threats posed

by malicious actors.

The report addresses one such aspect of these pressing concerns by exploring file en-

cryption in Python, an interpreted language that is not conventionally known for its

performance capabilities. This project delves into the realm of concurrency and aims to

demonstrate how significant improvements in encryption performance can be achieved

by leveraging the power of multithreading.

With the advent of powerful hardware and the increasing demand for processing vast

amounts of data, the single-threaded approach may not always suffice. By employing

multithreading, we aim to harness the potential of parallel execution, enabling faster

encryption and decryption processes for large files.

This project report is an integral part of our investigatory project, a requisite for the

completion of the Central Board of Secondary Education (CBSE) class 12 curriculum.

It represents our collective effort to explore the fusion of modern cryptographic tech-

niques and the capabilities of Python, offering readers an insight into the world of

multithreaded I/O applications.
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Chapter 1

Introduction

In this project report, we explore multithreaded cryptographic operations in Python,

where we try to implement essential Python concurrency techniques to improve per-

formance. Our focus lies in harnessing the capabilities of Python’s concurrent.futurers

module, which offers ability to launch parrellel tasks, and use it for encryption using

the PyNaCl module, which provides bindings for the C-based Sodium library. By inte-

grating PyNaCl and using concurrency, we aim to demonstrate performance gains over

similar single-threaded Python implementations.

1.1 Background

During the initial phases of this project, we observed that a simple Python encryption

program suffered from the under-utilization of hardware resources. Python, being an

interpreted language, inherently exhibits slower performance compared to low-level

compiled languages like C or C++. Consequently, when attempting to sequentially

encrypt file chunks of substantial sizes, particularly files exceeding 500 megabytes, the

process became exceptionally sluggish.

The sluggishness prompted us to explore alternative approaches to enhance the perfor-

mance of our encryption program. We recognized that harnessing concurrency features

in Python could hold the key to significant performance improvements. By introduc-

ing concurrent execution, we aimed to maximize the utilization of available hardware

resources and reduce encryption and decryption times dramatically.

Through the implementation of multithreading, we sought a parallel encryption process,

allowing multiple chunks of files to be encrypted simultaneously. This approach was

expected to reduce the overall encryption time at the cost of increased usage of hardware
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resources.

In this report, we present our findings and outcomes from the project, showcasing the

remarkable impact of using concurrency in Python along with the PyNaCl library. We

will also present a complete implementation in the form of CryptBuddy — a command-

line file encryption software.

1.2 Chapter List

The following list provides a brief summary of each chapter in this report.

Chapter 2 XSalsa20Poly1305 and PyNaCl. This chapter deals with the introduction

of PyNaCl and the usage of cryptographic algorithm XSalsa20Poly1305 for symmetric

encryption.

Chapter 3 Concurrency in Python. This chapter explores concurrency features pro-

vided by Python and its advantages as well as drawbacks.

Chapter 4 Implementation. This chapter deals with the implementation of a multi-

threaded encryption program with optimized performance.

Chapter 5 Evaluation & Testing. This chapter presents the statistics and performance

benchmarks for the program.

Chapter 6 Conclusion. The conclusions of the report.
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Chapter 2

XSalsa20Poly1305 and PyNaCl

PyNaCl is a library that provides Python bindings to the C library Libsodium. The

Sodium cryptographic library, by Denis 2013 is a modern cross-compatible and pack-

ageable fork of the Network and Cryptography library (https://nacl.cr.yp.to/)

with extended API. In the context of this report, the encryption algorithm used by

Libsodium for it’s authenticated secret-key (Symmetric-key) encryption will be inves-

tigated, namely, the XSalsa20 stream cipher and Poly1305 authentication algorithms.

Symmetric-key ciphers use the same cryptographic key for encryption of plaintext and

decryption of the ciphertext, so produced.

Figure 2.1: Simple Symmetric-key Encryption, By MarcT0K (icons by JGraph) - Own
work, CC BY-SA 4.0

2.1 Specifications of XSalsa20 Cipher

Similar to a simple symmetric-key algorithm as shown in Figure 2.1, The XSalsa20

stream cipher needs a 192-bit unique nonce value in addition to the secret key. The

XSalsa20 cipher is the successor of the Salsa20 cipher which required a 64-bit nonce

value, as explained in the specifications, by Bernstein 2011. The XSalsa20 is a fast and

secure encryption algorithm and safe against most attacks.

As per the context of encryption of large files, the details of the following must be
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researched:

1. The PRG period of the cipher which will determine the maximum safe size of

plaintext that can be encrypted without risk.

2. The performance and resource usage for encrypting long plaintext messages.

2.2 Limitations of XSalsa20Poly1305

The maximum safe length of the plaintext is virtually infinite for XSalsa20, as Salsa20

uses a 64-bit block counter and blocks of 64 bytes, limiting it’s PRG period to 273

bits. This implies that mathematically, any file can directly be encrypted using the

XSalsa20 cipher regardless of it’s size. However, the time required for computation

of such large files, as well as the amount of memory allocated for it at once must be

considered by the user. As per the claim of this report, time required for encryption of

large files should be greatly reduced by dividing the data into chunks and encrypting

them parallelly. The authentication algorithm Poly1305 will also not limit the file size,

because the ciphertext length field in the construction of the buffer on which Poly1305

runs, limits the ciphertext (and hence, the plaintext) size to 264 bytes, as described in

the article by Nir and Angeley 2018

However, there is one significant limitation of the XSalsa20 cipher that must be taken

into serious consideration; the same nonce value with the same key must not be used

for encrypting different plaintexts. If multiple plaintexts are encrypted using the same

keystream, an adversary can use these messages to infer information about the plain-

texts. Therefore, XSalsa20 generates random keystrings for every message using a

randomly generated nonce along with the key, allowing the sender to preserve the same

encryption key among messages. Hence, when encrypting the chunks parallelly usage

of a unique nonce for encryption of each chunk must be ensured.

2.3 PyNaCl and CFFI

PyNaCl (https://pynacl.readthedocs.io/en/1.4.0/) provides Python bindings to

Libsodium. PyNaCl uses C Foreign Function Interface for Python (CFFI) to provide

bindings to the C functions in Libsodium. One important thing to note here, is that

the C function calls are done with Python’s Global Interpreter Lock released. This is

specified in the CFFI manual by Rigo 2023. In CPython, the Global Interpreter Lock,

or GIL, is a mutex that protects access to Python objects, preventing multiple threads

from executing Python bytecodes at once. Without the GIL being released, it would

not be possible to achieve parallelization through multithreading.
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Chapter 3

Concurrency in Python

Python provides both, multithreading and multiprocessing features for parallel appli-

cations. However, the limitations when working with the CPython interpreter must be

evaluated.

3.1 Multithreading in Python

Python has built-in support for threads. The Python Software Foundation 2023b de-

scribes threads as light-weight tasks that can share a global data space. The low level

module to achieve fine-grained control of threads in Python is threads. This report will

be using an abstract class concurrent.futures.ThreadPoolExecutor() on top of threads

which will execute parallel tasks in a thread pool.

The major drawback of using threads is that the GIL does not allow parallel execution

among threads and only one thread can run Python bytecode at a time. This makes

threading practically useless for most Python applications. However, certain libraries

that use bindings to C functions can overcome this issue by releasing the GIL. As

already discussed in the Section 2.3, C function calls done using CFFI will be executed

with the GIL released, which will allow true parallelization of tasks in encryption using

PyNaCl.

Another limitation of multithreading in Python is that the threads will not necessarily

divide the tasks among different CPU cores, which means that most of the CPU cores

will remain unutilized by the parallel tasks.

1 from concurrent.futures import ThreadPoolExecutor

2 values = [2,3,4,5]

3 def square(n):

4 return n * n

5



5 def main():

6 with ThreadPoolExecutor(max_workers = 3) as executor:

7 results = executor.map(square, values)

8 for result in results:

9 print(result)

10 if __name__ == ’__main__’:

11 main()

Listing 3.1: An Example of a Thread Pool Implementation using ThreadPoolExecutor()

Listing 3.1 provides a simple example of usage of the thread pool executor. It is

important to note here that this will not improve performance due to GIL.

3.2 Multiprocessing in Python

Multiprocessing spawns multiple, entirely separate processes for executing tasks par-

allelly. As mentioned by the Python Software Foundation 2023a, this will effectively

side-step the Global Interpreter Lock and make the tasks run in parallel. It will also

use multiple CPU cores as specified, and divide the tasks among them. Python has a

built-in multiprocessing module for spawning processes similar to threading. However,

concurrent.futures.ProcessPoolExecutor() will be used here.

There is significant overhead in execution time for spawning multiple processes, and

serialization & deserialization of return values using pickle. It also adds Inter-Process

Communication (IPC) overhead. Therefore, multiprocessing should only be used for

highly CPU intensive tasks that have low data footprint passed to each function call.

A simple implementation of concurrent.futures.ProcessPoolExecutor() is provided in

Listing 3.2:

1 from concurrent.futures import ProcessPoolExecutor

2 values = [2,3,4,5]

3 def square(n):

4 return n * n

5 def main():

6 with ProcessPoolExecutor(max_workers = 3) as executor:

7 results = executor.map(square, values)

8 for result in results:

9 print(result)

10 if __name__ == ’__main__’:

11 main()

Listing 3.2: An Example of a Process Pool Implementation using

ProcessPoolExecutor()
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Chapter 4

Implementation

After trying both the concurrency techniques mentioned in Chapter 3, experiments

showed that multiprocessing was extremely slow as the encryption task has a high data

footprint passed to the function call. This made it even slower than direct encryption.

Hence, we settled on the multithreaded approach.

4.1 Basic Multithreaded Encryption

The implementation of a simple encryption program using thread pool is straightfor-

ward. First of all, a function for encrypting a single chunk of data can be defined as

shown in Listing 4.1.

1 def encrypt_chunk(args):

2 chunk, box, nonce = args

3 return box.encrypt(chunk, nonce).ciphertext

Listing 4.1: The encrypt chunk function

The arguments are deliberately kept in a single tuple and destructured later, as it will be

easier to pass them as a single tuple from the parent function from which this function

will be called. The box is PyNaCl’s SecretBox() class which can create authenticated

ciphertext from the plaintext. The chunk and nonce are python byte objects.

Now, this function can be called for each chunk asynchronously using a thread pool. For

this, ThreadPoolExecutor() from concurrent.futures module is used. It must be ensured

that each chunk gets a unique nonce value for encryption, as stated in Section 2.2. For

this, all the tuples (arguments) for the chunks are constructed at once, incrementing

the nonce for each subsequent chunk, as shown in Listing 4.2.
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1 from nacl.bindings import sodium_increment

2 from nacl.secret import SecretBox

3

4 KEYSIZE = SecretBox.KEY_SIZE

5 NONCESIZE = SecretBox.NONCE_SIZE

6 key = urandom(KEYSIZE)

7 nonce = urandom(NONCESIZE)

8 data = urandom(300 * 1024 * 1024)

9

10 box = SecretBox(key)

11 args = []

12 total = len(data)

13 i = 0

14 while i < total:

15 chunk = data[i : i + chunksize]

16 nonce = sodium_increment(nonce)

17 args.append((chunk, box, nonce))

18 i += chunksize

Listing 4.2: Creating arguments for each chunk

Hence, The list of all arguments to be passed to the encrypt chunk() function is obtained

as the args variable.

Finally, the thread pool executor is used to map the arguments to the encrypt chunk()

function to get the list of output chunks, encrypted in parallel threads, as shown in

Listing 4.3.

1 with ThreadPoolExecutor(max_workers=4) as executor:

2 out = executor.map(encrypt_chunk, args)

Listing 4.3: Multithreaded Encryption

To assemble the code in useful functions, the complete implementation for multi-

threaded encryption is given in Listing 4.4

1 from concurrent.futures import ThreadPoolExecutor

2 from os import urandom

3

4 from nacl.bindings import sodium_increment

5 from nacl.secret import SecretBox

6

7

8 def encrypt_chunk(args):

9 chunk, box, nonce = args

10 return box.encrypt(chunk, nonce).ciphertext

11
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12

13 def encrypt(

14 data: bytes,

15 key: bytes,

16 nonce: bytes,

17 chunksize: int

18 ):

19 box = SecretBox(key)

20 args = []

21 total = len(data)

22 i = 0

23 while i < total:

24 chunk = data[i : i + chunksize]

25 nonce = sodium_increment(nonce)

26 args.append((chunk, box, nonce))

27 i += chunksize

28 with ThreadPoolExecutor(max_workers=4) as executor:

29 out = executor.map(encrypt_chunk, args)

30 return out

Listing 4.4: Complete Multithreaded Encryption Implementation

And, the corresponding functions for decryption is given in Listing 4.5

1 from concurrent.futures import ThreadPoolExecutor

2 from os import urandom

3

4 from nacl.bindings import sodium_increment

5 from nacl.secret import SecretBox

6

7 def decrypt_chunk(args):

8 chunk, box, nonce = args

9 return box.decrypt(chunk, nonce)

10

11 def decrypt(data: bytes, key: bytes, nonce: bytes, chunksize: int, macsize: int):

12 box = SecretBox(key)

13 args = []

14 total = len(data)

15 i = 0

16 while i < total:

17 chunk = data[i : i + chunksize + macsize]

18 nonce = sodium_increment(nonce)

19 args.append((chunk, box, nonce))

20 i += chunksize + macsize

21 with ThreadPoolExecutor(max_workers=4) as executor:

22 out = executor.map(decrypt_chunk, args)

23 return out
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Listing 4.5: Complete Multithreaded Decryption Implementation

4.2 Working With The Filesystem

As the basic implementation for encryption and decryption is completed, large files can

be read and written in binary mode using Python’s open() function. As the files are

very large and the data cannot be directly loaded into memory, they can be sequentially

read in parts and encrypted part-by-part and the parts will also be written to output

file sequentially. Listing 4.6 depicts the code required for this solution.

1 inp = "secret_message.dat"

2 out = "encrypted_message.dat"

3

4 KEYSIZE = SecretBox.KEY_SIZE

5 NONCESIZE = SecretBox.NONCE_SIZE

6 key = urandom(KEYSIZE)

7 nonce = urandom(NONCESIZE)

8 chunksize = 5 * 1024 * 1024

9 maxpartsize = 1 * 1024 * 1024 * 1024 # Limit the part size as per available memory

10

11 with open(inp, "rb") as infile:

12 with open(out, "wb") as outfile:

13 while infile.tell() != -1:

14 partdata = infile.read(maxpartsize)

15 encypted_part = encrypt(partdata, key, nonce, chunksize)

16 outfile.write(encypted_part)

Listing 4.6: I/O Implementation With Large Files
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Chapter 5

Evaluation & Testing

Several benchmarks on the implementation provided in Listings 4.4 and 4.5 were per-

formed using the pyperf (https://pyperf.readthedocs.io/en/latest/) toolkit on a

machine with 7.8GB usable RAM, and 11th Gen Intel(R) Core(TM) i3-1115G4 CPU.

Python v3.9.13 was used on Windows 11 Home build 22621.2134. The results are

presented here.

5.1 Benchmarking Direct Encryption

Direct encryption of 300MB of random data takes 729ms ± 37ms on average. Table

5.1 is the summary of 40 runs with 120 values, each taken with 5 loop iterations.

Result Time (milliseconds)

Minimum 704

Median 724

MAD 6

Mean 729

Standard Deviation 37

Maximum 993

Table 5.1: Direct encryption of 300MB of data

The results are summarized as through a histogram in Figure 5.1.
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Figure 5.1: Direct Encryption Statistics

5.2 Benchmarking Multithreaded Encryption

The benchmarks for the multithreaded encryption implementation from Listing 4.4

were taken by dividing 300MB of random data into chunks of different sizes. Figure

5.2 shows the graph for execution time for using different chunk sizes.

Figure 5.2: Multithreaded encryption times for various chunk sizes.
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Encrypting chunks of smaller sizes upto 64MB has relatively low execution times,

whereas, for larger chunks of over 64MB, the execution time increase significantly.

This is because the entire data will not be distributed among all four workers, resulting

in some workers remaining unused. Using chunks of sizes under 1MB perform signifi-

cantly better. While chunks of 128KB perform slower, as the number of tasks created

will be responsible for increasing the load on the thread pool, using chunks of 512KB

results in the lowest execution time, averaging at 400ms ± 19ms. This is because the

small size of chunks can fit in the L3 cache of the processor, and will also not create

too many tasks for the four workers.

5.3 Optimum Performance with Chunks of 512KB

As 512KB has the least execution time experimentally, further benchmarking was done

with 120 values, similar to Section 5.1, to get the results as summarized in Figure 5.3.

Figure 5.3: Statistics for chunks of size 512KB

5.4 Conclusions

The encryption time for most chunk sizes from 1MB to 64MB is approximately 1.53

times faster than direct encryption. However, the peak performance attained by 512KB

chunks is 1.82 times faster than direct encryption. This proves the claim of the report,

as the benchmarks show that multithreading has successfully reduced execution time.
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Chapter 6

Conclusion

The Section 5.4 summarizes the performance gains through the detailed benchmarks

on 300MB of random data. The implementation provided in Listing 4.6 can be

used to create the foundation of a robust encryption suite in Python. CryptBuddy

(https://github.com/Quat3rnion/cryptbuddy) has been created by the authors of

this report, as a fully featured command-line tool for multithreaded encryption and

has several features for security of large files along with fast encryption and decryption.

CryptBuddy consistently outperforms the old implementation with over 40% decrease

in execution time for both encryption as well as decryption of files over 1GB.

6.1 Conclusions

Even though Python is a single-threaded interpreted language not particularly known

for performance, by the usage of multithreading, the performance of encryption using

a state of the art stream cipher, XSalsa20. Encryption of large files spanning across

multiple GBs of data can be encrypted within seconds using parallelism. CryptBuddy

(https://github.com/Quat3rnion/cryptbuddy) is a performant CLI encryption suite

written in Python by using the techniques described in this report.

6.2 Future Work

To improve the performance even further, we can optimize and create a custom multi-

processing module that can manage the high amounts of data across multiple processes

through efficient IPC. This can potentially harness the power of multiple CPU cores to

boost performance more significantly than the multithreaded approach.
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Appendix A

Project Specification

Summary of the project outline.

A.1 Software Specifications

All the implementations and programs provided in the report used the following soft-

ware:

1. Python v3.9.13

2. PyNaCl v1.5.0

3. pyperf v2.6.1

The operating system used is Microsoft Windows 11 Home build 22621.2134.

A.2 Hardware Specifications

The following are the specifications of the hardware used to run the programs provided

in the report:

1. 11th Gen Intel(R) Core(TM) i3-1115G4 @ 3.00GHz 3.00 GHz processor

2. 8.00 GB (7.80 GB usable) RAM

3. 64-bit operating system, x64-based processor
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